

THE UNIVERSITY OF THE WEST INDIES **FIVE ISLANDS CAMPUS**

Semester II

Examinations of April/May 2022

Course Code:	MATH0110			
Course Title:	Calculus and Analytical Geometry			
Date of Assessment:	5 th May, 2022			
Time:	1:00 PM			
Duration:	Two (2) hours			
This paper has 3 pa	NDIDATES: ges and _5 questions.			
YOU ARE REQUIRED TO	ANSWERALL (5)	QUESTIONS.		
THIS ASSESSMENT IS W	ORTH50 % OF YO	UR FINAL GRADE.		
Examination Weight: 50%	Marked Out of:	100		
	ILS FROM INSTRUCTOR			

- 2. Answer ALL questions.
- 3. Write your answers on binder sheets.
- 4. Please ensure that your name and ID number is written on each page.

Find the 2nd degree Taylor polynomial for $f(x) = \ln x$ centered at c = 3 and 1. (a) use it to approximate ln(3.3).

[10 marks]

Note: Taylor's Theorem is:

$$f(x) = f(c) + f'(c)(x-c) + \frac{f''(c)(x-c)^2}{2!} + \dots + \frac{f''(c)(x-c)^r}{r!} + \dots$$

Find the 3rd degree Maclaurin Series polynomial for $f(x) = e^x$ and use it to (b) approximate $e^{1.0}$.

[10 marks]

<u>Hint:</u> Maclaurin Series is a special type of Taylor series which is always centered at c=0

Note: Maclaurin Series is a special type of Taylor series which is always centered at
$$c=0$$

$$f(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!} + \dots + \frac{f^r(0)x^r}{r!} + \dots$$

$$Total [20 marks]$$

- Show that the equation $x^3 3x^2 1 = 0$ has a root, α , between 3 and 4. Justify your answer. [6 marks]
 - Show that the function $f(x) = x^3 3x^2 1$ is increasing at x=3. [2 marks]
 - Taking the number 3 as the first approximation for α , use the Newton-Raphson method to find a better approximation for α , to 3 **decimal places**. [12 marks] Total [20 marks]

Note: The Newton-Raphson formula is:

If x_r is an approximation to a root, α , of the equation f(x) = 0, then:

$$x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)}$$
 gives a better approximation to α

- Find the number of ways of selecting (choosing) 4 persons from a list of 7 3. (a) persons to sit on a committee. [2 marks]
 - (b) How many different five (5)-digit codes can be made from the digits 3, 4, 5, 6, 7, 8, 9 if each digit can only be used once? [2 marks]]
 - In how many ways can the letters in the word NUMBER be arranged? (c) [2 marks]]
 - (d) In a pack of cards, find the probability of obtaining: a Nine OR a Heart i.e. P(9 heart) [3 marks]

3. (f) A survey of a sample of business students resulted in the following information regarding the genders of the individuals and their selected major.

Selected Major							
Gender	Management	Marketing	Others	Total			
Male	40	10	30	80			
Female	30	20	70	120			
Total	70	30	100	200			

i. What is the probability of selecting a female?

[2 marks]

- ii. What is the probability of selecting a male who is also majoring in Marketing? [2 marks]
- iii. What is the probability of selecting an individual who is majoring in Marketing, given that the person is female? [2 marks]
- iv. What is the probability of selecting a male OR a management major?

[3 marks]

Total [20 marks]

4. (a) Find the Inverse
$$M^{-1}$$
, of the Matrix $M = \begin{pmatrix} 1 & -3 & 0 \\ 2 & 0 & 1 \\ 4 & 1 & 3 \end{pmatrix}$. [10 Marks]

(b) Solve the Simultaneous Equations using Row Echelon Form (REF)

$$x + y + z = 5$$

 $2x + 2y - z = 7$ [8 Marks]
 $x - y + 2z = 2$

(c) Are the systems of equations in 4 (b) above, Consistent or Inconsistent?

Justify your answer.

[2 Marks]

Total [20 marks]

- 5. (a) Solve the (First Order) differential equation $(x^4 7) \frac{dy}{dx} = 4x^3$. [9 Marks]
 - (b) Solve the differential equation $\frac{d^2y}{dx^2} + 20\frac{dy}{dx^2} + 64y = 0$