

THE UNIVERSITY OF THE WEST INDIES FIVE ISLANDS CAMPUS

Semester II

Examinations of April/May 2023

Course Code: S	TAT1001				
Course Title: S	TATISTICS FOR SCI	IENTIST			
Date of Assessment:	May 3 rd 2023				
Time:	4 PM				
Duration:	2 HRS				
INSTRUCTIONS TO	CANDIDATES:				
This paper has _5_	pages and 4	questions.			
YOU ARE REQUIR	ED TO ANSWER _	_ALL QUESTIONS.			
THIS ASSESSMENT	IS WORTH60	_ % OF YOUR FINAL GRADE.			
ASSESSMENT DET	AILS FROM INSTRU	CTOR(S):			
The last 2 pages are statistical tables, only negative z-values are provided.					

Course Code: STAT1001

©The University of the West Indies

03/05/2023

1. The weights of eggs produced by a certain breed of hen are normally distributed with mean 65 grams and standard deviation of 5 grams. Draw an appropriately shaded and labeled Normal curve to accompany your answer to EACH of the questions below:

a. What is the probability that one egg selected at random from a hen house will weigh more

than 68 grams? [4]

b. What is the probability that one egg selected at random from a hen house will weigh between 60 and 70 grams? [5]

c. What is the probability that the average weight of a dozen eggs selected at random will be more than 68 grams?

2. A researcher wants to determine if there is a significant association between smoking and lung cancer in a population of patients. A random sample of 500 patients was taken, and the data collected is shown in the contingency table below:

Lung Cancer	Yes	No
Smoking		
Yes	120	80
No	50	250

d. Define the null and alternative hypothesis to investigate if there is a significant association between smoking and lung cancer [2]

e. Provide a table of the expected frequencies [3]

f. Compute the ChiSq statistic. [4]

g. Determine if there a significant association between smoking and lung cancer at the 90% level of significance? [6]

- 3. It takes doctors a mean of 19.1 minutes to see 13 patients. Assume that the time spent per patient vary according to the Normal distribution with mean 1.47 and standard deviation 0.36 minutes.
 - (a) Construct a 90% confidence interval for the mean time spent per patient. [5]

(b) If we want to be 98% confident that our estimate is within 1.5 minutes of the population mean, how many patients should we randomly sample? [5]

c) Additional analysis was carried out on doctors at another clinic, where the age of the doctors (in years) is used to predict the amount of time (in min) a doctor will spend with a patient. The regression equation from this analysis is:

y = 12.20 + 0.0442x.

(i) How much additional time a doctor is predicted to spend with a patient for every one year increase in age? [2]

(ii) how much time does a 20 year old doctor spend with a patient at this clinic? [3]

- 4. Green Apple Restaurant claims that their new recipe for fried chicken results in an average cooking time of 10 minutes, and the cook time follows a normal distribution. To test this claim, a random sample of 100 chicken pieces are cooked using the new recipe, and the average cooking time is found to be 9.5 minutes with a standard deviation of 1.2 minutes.
 - (a) Use the p-value to determine if we can reject the restaurant claim at a significance level of 0.05? [5]
 - (b) Use the test statistic to determine if we can reject the restaurant claim at a significance level of 0.05? [5]
 - (c) Green Apple claims that 80% of its customers are satisfied with their new service. To test this claim, a random sample of 60 customers is surveyed and it is found that 20 of them are satisfied. Can we reject the restaurant's claim at a significance level of 0.05?

Course Code: STAT1001

END OF PAPER: START OF TABLES

TABLE 3 Areas under the Normal Curve

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0017	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0722	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

TABLE 5 Critical Values of Chi-Square

df χ ² _{.995}		X.990	X.975	X.950	X.900	
1	.0000393	.0001571	.0009821	.0039321	.0157908	
2	.0100251	.0201007	.0506356	.102587	.210720	
3	.0717212	.114832	.215795	.351846	.584375	
4	.206990	.297110	.484419	.710721	1.063623	
5	.411740	.554300	.831211	1.145476	1.61031	
6	.675727	.872085	1.237347	1.63539	2.20413	
7	.989265	1.239043	1.68987	2.16735	2.83311	
8	1.344419	1.646482	2.17973	2.73264	3.48954	
9	1.734926	2.087912	2.70039	3.32511	4.16816	
10	2.15585	2.55821	3.24697	3.94030	4.86518	
11	2.60321	3.05347	3.81575	4.57481	5.57779	
12	3.07382	3.57056	4.40379	5.22603	6.30380	
13	3.56503	4.10691	5.00874	5.89186	7.04150	
14	4.07468	4.66043	5.62872	6,57063	7.78953	
15	4.60094	5.22935	6.26214	7.26094	8.54675	
16	5.14224	5.81221	6.90766	7.96164	9.31223	
17	5.69724	6.40776	7.56418	8.67176	10.0852	
18	6.26481	7.01491	8.23075	9.39046	10.8649	
19	6.84398	7.63273	8.90655	10.1170	11.6509	
20	7.43386	8.26040	9.59083	10.8508	12,4426	
21	8.03366	8.89720	10.28293	11.5913	13.2396	
22	8.64272	9.54249	10.9823	12.3380	14.0415	
23	9.26042	10.19567	11.6885	13.0905	14.8479	
24	9.88623	10.8564	12.4011	13.8484	15.6587	
25	10.5197	11.5240	13.1197	14.6114	16.4734	
26	11.1603	12.1981	13.8439	15.3791	17.2919	
27	11.8076	12.8786	14.5733	16.1513	18.1138	
28	12.4613	13.5648	15.3079	16.9279	18.9392	
29	13.1211	14.2565	16.0471	17.7083	19.7677	
30	13.7867	14.9535	16.7908	18.4926	20.5992	
40	20.7065	22.1643	24.4331	26.5093	29.0505	
50	27.9907	29.7067	32.3574	34.7642	37.6886	
60	35.5346	37.4848	40.4817	43.1879	46.4589	
70	43.2752	45.4418	48.7576	51.7393	55.3290	
80	51.1720	53.5400	57.1532	60.3915	64.2778	
90	59.1963	61.7541	65.6466	69.1260	73.2912	
00	67.3276	70.0648	74.2219	77.9295	82.3581	

Source: From "Tables of the Percentage Points of the χ^2 -Distribution," Biometrika Tables for Statisticians, Vol. 1, 3rd ed. (1966). Reproduced by permission of the Biometrika Trustees.